Jérome Verdun

Maître de Conférences
Spécialité Géodésie physique et gravimétrie

Développements méthodologiques et instrumentaux autour d’un système léger de gravimétrie/gradiométrie mobiles à axes liés (strapped down) pour la cartographie en champ proche du champ de gravité ; calcul numérique du champ de gravité.

Qualifications

  • 2000 : Doctorat de l’Université des Sciences du Languedoc, Montpellier (34), spécialité « géophysique », direction Roger Bayer, intitulée : « La gravimétrie aéroportée en région montagneuse – Exemple du levé franco-suisse sur les Alpes Occidentales » ; mention très honorable.
  • 1995 : Agrégation de Sciences Physiques ; option « Physique et électricité appliquées ».
  • 1992–1996 : Étudiant normalien à l'École Normale Supérieure de Cachan (94) .

Expérience professionnelle

  • Depuis septembre 2011 : Maître de Conférences en géodésie à l’ESGT et chercheur dans l’équipe L2G. Chargé de cours en géodésie, mathématiques appliquées et programmation scientifique. 2008–2011 : Professeur agrégé de sciences physiques au lycée Rabelais de Chinon (37).
  • 2003–2008 : PRAG enseignant en géodésie au Département de Positionnement Terrestre et Spatial de l’École Nationale des Sciences Géographiques (ENSG) de l’Institut National de l’Information Géographique et Forestière (IGN); chargé de recherches au Laboratoire de Recherches en Géodésie (LAREG) de l’IGN (http://recherche.ign.fr/labos/lareg/page.php).
  • 2002– 2003 : Professeur agrégé de sciences physiques au lycée Camille Claudel de Blois (41).
  • 2000– 2002 : Chercheur post doc à l’École Polytechnique Fédérale de Zürich (Suisse) au laboratoire de géodésie et géodynamique (http://www.ggl.baug.ethz.ch).

Activités de recherche

1. Métrologie, instrumentation et traitement des données en gravimétrie mobile :
◦ modèles mathématiques des instruments ;
◦ capteurs : gravimètres embarqués, capteurs inertiels (accéléromètres, gyromètres), systèmes de radio-positionnement GNSS ;
◦ traitement du signal : fusion multi-capteurs, filtrages, méthodes statistiques d’estimation.
 
Activités récemment abordées :

2. Gradiométrie mobile

3. Calcul numérique du champ de gravité complet (= potentiel, accélération, tenseur des gradients) à partir de ses sources

Responsabilités

  • Co-direction (HDR en cours) de la thèse de Clément Roussel (http://clementroussel.github.io) intitulée : «  Modélisation à haute résolution du champ de gravité terrestre par combinaison de mesures issues de la gravimétrie satellitaire et la gravimétrie terrestre mobile : application au domaine sous-marin » ; École doctorale « Sciences Pour l’Ingénieur, Géosciences, Architecture » (SPIGA, ED 498), École Centrale de Nantes.
  • Encadrement de la thèse de Bertrand De Saint Jean intitulée : « Étude et développement d’un système de gravimétrie mobile », direction Jean-Pierre Barriot, École doctorale d’Astronomie et d’Astrophysique d’Île-de-France (ED 127), Observatoire de Paris, soutenue en 2008.
  • Encadrement de 10 étudiants, niveau master M2 ou 3e année d’école d’ingénieurs.

Publications

  1. Verdun, J., Damenet, N., and J. Cali, Moving-base vector gravimetry data processing based on optimal, physically sensible evolution models: Proceedings of International Symposium, Terrestrial Gravimetry : Static and Mobile Measurements, Elektropribor – International Association of Geodesy, TG-SMM 2013, St Petersburg, 41-47, 2013.
  2. Li, Qi, De Saint-Jean, B., Verdun, J., Cali, J., and M. Diament, Vector Moving Gravimetry Processing Using Implicit Least Squares: Proceedings of International Symposium Terrestrial Gravimetry – Static and mobile measurements, Elektropribor TG-SMM 2010, St Petersburg, 55-59,2010.
  3. Tsoulis, D., Jamet, O., Verdun, J., and N. Gonindard, N., algorithms for the computation of the potential harmonic coefficients of a constant density polyhedron: Journal of Geodesy, 83, 10, 925 – 942, doi: 10.1007/s00190-009-0310-9, 2009.
  4. Jamet, O., Tsoulis, D., Verdun, J., and N. Gonindard, Assessment of a numerical method for computing the spherical harmonic coefficients of the gravitational potential of a constant density polyhedron: Proceedings IAG International Symposium GGEO 2008, Chania, Crete, Greece, 23-27 June 2008, 135, 437 – 444, 2008.
  5. Abassi, M., Barriot, J.-P., and J. Verdun, Airborne LaCoste and Romberg gravimetry: a space domain approach: Journal of Geodesy, 81, 4, 269-284, doi:10.1007/s00190-006-0107-z, 2007.