Nom:	Prénom:
------	---------

Concours d'entrée TS

Session 2023

Q.C.M de mathématiques

Durée: 1 h

Sans document; calculatrice personnelle autorisée

Le sujet comporte 7 pages.

Cette épreuve comporte 4 exercices indépendants comportant au total 20 Q.C.M. Chaque question ne comporte qu'**une seule** proposition correcte. Une réponse juste rapporte un point. Une réponse fausse n'apporte pas de point et n'en retire pas.

Bon travail!

EXERCICE 1 : ÉTUDE D'UNE FONCTION NUMÉRIQUE

Soit la fonction numérique $f: x \longmapsto \frac{5x^2 - 10x}{(x-1)^2}$.

Question 1

Soit D_f l'ensemble de définition de la fonction f.

Cochez la proposition correcte

	D	f =	$\mathbb{R}.$
--	---	-----	---------------

$$\square D_f = \mathbb{R}^+.$$

$$\square D_f = \mathbb{R} - \{-1\}.$$

☐ Aucune des trois propositions précédentes.

Ouestion 2

Pour tout $x \in D_f$, on pose : $f(x) = a + \frac{b}{(x-1)^2}$ où a et b sont deux réels.

Déterminez les réels a et b.

Cochez la bonne proposition.

$$\Box \ a = +5 \text{ et } b = -5.$$

$$\Box \ a = +5 \text{ et } b = +5.$$

$$\Box \ a = -5 \text{ et } b = +5.$$

☐ Aucune des trois propositions précédentes.

Question 3

Déterminez la primitive F de f telle que F(2) = 1Quelle est la bonne expression de F?

$$\Box F(x) = \frac{5x^2 + 9x - 9}{x - 1}.$$

$$\Box F(x) = \frac{5x^2 + 19x - 19}{x - 1}.$$

$$\Box F(x) = \frac{5x^2 - 19x + 19}{x - 1}.$$

☐ Aucune des trois propositions précédentes.

EXERCICE 2: PLAN PASSANT PAR TROIS POINTS

Dans le plan rapporté au repère orthonormal (O, \vec{i}, \vec{j}) , on considère les points M(0, -3, -2), N(4, 0, 0), P(2, 0, -1). Soit \mathscr{P} le plan passant par les points M, N, P.

Question 4

Calculez les coordonnées d'un vecteur unitaire et normal au plan \mathscr{P} . Cochez la bonne proposition.

 $\Box \frac{1}{\sqrt{5}}(-1,0,2).$

 $\Box \frac{1}{\sqrt{5}}(2,0,-1).$

 $\Box \frac{1}{\sqrt{5}}(0,-1,2).$

☐ Aucune des trois propositions précédentes.

Question 5

Déterminez l'équation cartésienne du plan \mathscr{P} .

Cochez la bonne proposition.

 $\square x - 2z + 4 = 0.$

 $\Box x + 2z - 4 = 0.$

 $\hfill \square$ Aucune des trois propositions précédentes.

Question 6

Parmi les points suivants, lequel appartient au plan \mathscr{P} ? Cochez la proposition correcte.

 $\square \ Q(12,3,-4).$

 $\square \ \widetilde{R}(12,2,-4).$

 $\Box S(-12,3,4).$

☐ Aucune des trois propositions précédentes.

EXERCICE 3 : ÉTUDE D'UNE TRANSFORMATION DE L'ESPACE

Dans le plan rapporté au repère orthonormal (O, \vec{i}, \vec{j}) , on considère un point M(x, y, z) et son transformé M'(x', y', z') par une transformation S de l'espace. Les coordonnées (x', y', z') sont reliées aux coordonnées (x, y, z) par les trois relations suivantes :

$$\begin{cases} x' = \frac{1}{3}(x-2y-2z) \\ y' = \frac{1}{3}(-2x+y-2z) \\ z' = \frac{1}{3}(-2x-2y+z) \end{cases}$$

Question 7

Déterminez l'équation cartésienne de l'ensemble $\mathscr E$ des points invariants par la transformat	ion S.
Cochez la proposition correcte.	

- \square & est le plan d'équation x y + z = 0.
- \square & est le plan d'équation x+y+z=0.
- \square & est le plan d'équation x + y z = 0.
- ☐ Aucune des trois propositions précédentes.

Question 8

Déterminez les images des points P(1,1,1) et P'(-1,-1,-1) par la transformation S. Cochez la proposition correcte.

- \square S(P) a pour coordonnées (-1,-1,-1), S(P'), (1,1,1).
- \square S(P) a pour coordonnées (1,1,1), S(P'), (-1,-1,-1).
- \square S(P) a pour coordonnées (-1,1,-1), S(P'), (1,-1,1).
- ☐ Aucune des trois propositions précédentes.

Question 9

Quelle est la nature de la transformation *S*?

Cochez la proposition correcte.

- \square S est une rotation d'axe D de vecteur directeur (1,1,1) d'angle $\frac{\pi}{4}$.
- \square S est une réflexion par rapport au plan d'équation x+y+z=0.
- \square S est une réflexion par rapport au plan d'équation x+y-z=0.
- ☐ Aucune des trois propositions précédentes.

Question 10

On considère l'ensemble $\mathscr C$ des points Q(x,y,z) de l'espace qui vérifient les équations suivantes :

$$\begin{cases} x^2 + y^2 + z^2 = 3 \\ x + y + z = 0 \end{cases}$$

Déterminez la nature de l'ensemble \mathscr{C} . Cochez la proposition correcte.

- \square \mathscr{C} est un cercle de centre O et de rayon $\sqrt{3}$ situé dans le plan d'équation x+y+z=0.
- \square % est un cercle de centre O et de rayon 1 situé dans le plan d'équation z=0
- \square % est un cercle de centre O et de rayon 3 situé dans le plan d'équation x+y+z=0.
- ☐ Aucune des trois propositions précédentes.

EXERCICE 4 : ÉTUDE D'UNE CYCLOÏDE - PARTIE 1

Dans le plan rapporté au repère orthonormal (O, \vec{i}, \vec{j}) , on considère la cycloïde \mathscr{C} dont une représentation paramétrique est définie pour tout $t \in \mathbb{R}$ par :

$$\begin{cases} x(t) &= 5(t - \sin t) \\ y(t) &= 5(1 - \cos t) \end{cases}.$$

La représentation graphique de la courbe $\mathscr C$ pour t appartenant à un intervalle fermé borné $J \subset \mathbb R$ est donnée sur la figure 1.

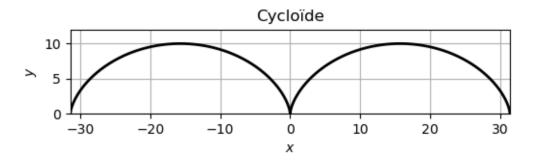


FIGURE 1 – Représentation graphique de la courbe \mathscr{C} .

Question 11

Par quelle transformation géométrique passe-t-on du point M(t) au point $M(t+2\pi)$ tous deux appartenant à \mathscr{C} ?

Cochez la proposition correcte.

- \Box une symétrie axiale dont l'axe est la droite d'équation $x = 10\pi$.
- \Box une translation de vecteur $10\pi j$.
- \Box une translation de vecteur $10\pi \vec{i}$.
- ☐ Aucune des trois propositions précédentes.

Question	12
Oueshon	14

Compte tenu du résultat de la question précédente, sur quel intervalle de \mathbb{R} suffit-il d'étudier les variation des fonctions $x(t)$ et $y(t)$? Cochez la proposition correcte. $\Box \ [-\pi/2, +\pi/2].$ $\Box \ [0, +\pi/2].$ $\Box \ [-\pi/2, 0].$ $\Box \ Aucune des trois propositions précédentes.$
Question 13
Après avoir étudié la parité des fonctions $x(t)$ et $y(t)$, quel intervalle réduit convient pour étudier la courb \mathscr{C} ?
Cochez la proposition correcte. $\Box [0,\pi].$
$\square \ [-\pi,\pi].$ $\square \ [0,2\pi].$
☐ Aucune des trois propositions précédentes.
Question 14
Soient x' et y' les dérivées respectives de x et y . Cochez les bonnes expressions de x' et y'
Question 15
Après avoir dressé le tableau des variations de x et y sur l'intervalle $I = [0, \pi]$, cochez la proposition correct parmi celles données ci-après.
 □ x est croissante sur I et y, décroissante sur I. □ x est décroissante sur I et y, croissante sur I. □ x et y sont toutes deux décroissantes sur I. □ Aucune des trois propositions précédentes.
Question 16
Déterminez les pentes de tangentes à la courbe $\mathscr C$ aux points $M(t)$ pour $t=0,\pi,2\pi$. Cochez ensuite la proposition correcte parmi celles données ci-après. \square $\mathscr C$ possède une demi-tangente verticale en $M(\pi)$ et deux tangentes horizontales en $M(0)$ et $M(2\pi)$. \square $\mathscr C$ possède une tangente horizontale en $M(\pi)$ et deux demi-tangentes verticales en $M(0)$ et $M(2\pi)$. \square $\mathscr C$ possède une tangente horizontale en $M(0)$ et deux demi-tangentes verticales en $M(\pi)$ et $M(2\pi)$. \square Aucune des trois propositions précédentes.

EXERCICE 4 : ÉTUDE D'UNE CYCLOÏDE - PARTIE 2

Cet exercice prend la suite de l'exercice précédent. On rappelle la relation qui permet de calculer la longueur L de l'arc de courbe compris entre les points $M(t_1)$ et $M(t_2)$ où t_1 et t_2 sont deux réels tels que $t_1 < t_2$:

$$L = \int_{t_1}^{t_2} \sqrt{\left[(x'(u))^2 + (y'(u))^2 \right]} du.$$

On rappelle également la relation trigonométrique suivante : $1 - \cos u = 2 \sin^2 \left(\frac{u}{2}\right)$.

Question 17

Parmi les relations ci-après, laquelle permet de calculer longueur L de l'arc de la courbe $\mathscr C$ compris entre les points M(0) et $M(2\pi)$?

- Cochez la bonne relation. $\Box 10 \int_0^{2\pi} \sin \frac{u}{2} du.$
 - $\Box 5 \int_0^{2\pi} \sin \frac{u}{2} du.$
 - $\Box -10 \int_0^{2\pi} \sin \frac{u}{2} du.$
 - ☐ Aucune des trois relations précédentes.

Question 18

Calculez le longueur L de l'arc de la courbe \mathscr{C} compris entre les points M(0) et $M(2\pi)$. Cochez la proposition correcte.

- $\Box L = 20.$
- $\Box L = 10.$
- $\Box L = 10\sqrt{2}$.
- ☐ Aucune des trois propositions précédentes.

Question 19

Le rayon de courbure R d'une courbe paramétrée en tout point où ce dernier est défini, est donné par :

$$R = \frac{\left(x'^2 + y'^2\right)^{\frac{3}{2}}}{|x'y'' - y'x''|}.$$

Déterminez l'expression du rayon de courbure R de la courbe \mathscr{C} en fonction de t.

Cochez la bonne expression de R.

- $\square R = 20(1 + \cos t).$
- $\square R = 20\sin\frac{t}{2}.$
- $\square R = 10\sin\frac{t}{2}$.
- ☐ Aucune des trois expressions précédentes.

Question 20

Calculez le rayon de courbure de la courbe $\mathscr C$ au point $M(\pi)$.
Cochez la proposition correcte.
\square $R=10$.
$\square R = 0.$
$\square R = 20.$
☐ Aucune des trois propositions précédentes.

Fin de l'énoncé